Amgen Biotech Experience Aliquoting Guide

We have provided sufficient reagents for the number of students you indicated on the Materials Request form, including a bit extra for pipetting errors. All solutions should be aliquoted into the provided 1.5 mL microcentrifuge tubes, unless otherwise indicated.

Label tube	Contents of tube	Aliquot	Actually used
S1	Solution 1 - blue &	12µL	10µL
	purple dye		
S2	Solution 2 - blue, purple	12µL	10µL
	& yellow dye		
S3	Solution 3 - purple dye	12µL	10µL

Laboratory 1. An Introduction to Microvolumetrics and Pipetting

Laboratory 2. Restriction Analysis of pARA and pKAN-R

Label tube	Contents of tube	Contents of tube Aliquot	
А	pARA (80ng/µL) 10µL		8µL
K	pKAN-R (80ng/µL)	pKAN-R (80ng/µL) 10µL	
RE	BamH I and Hind III	I and <i>Hind</i> III 5µL	
2.5xB	2.5x restriction 20µL		16µL
	buffer		
*dH ₂ O	Distilled water	1000µL 4µL	
* 111 0 '	1.0 11.1		

*dH₂O is used for several labs.

Laboratory 2a. pARA-R Restriction Digest: An Introduction to Plasmids and Restriction Enzymes

Label tube	Contents of tube	Aliquot	Actually used
RP-2a	pARA-R (70ng/µL)	10µL	8µL
RE	BamH I and Hind III	3µL	2μL
2.5xB	2.5x restriction	10µL	8µL
	buffer	-	-
*dH ₂ O	Distilled water	1000µL	2μL

Laboratory 3. Ligation of pARA and pKAN-R Restriction Fragments

Label tube	Contents of tube Aliquot		Actually used
5xB	5x ligation buffer	4µL	3μL
**LIG	T4 DNA ligase	2μL	2μL
*dH ₂ O	Distilled water	1000µL	2μL

******NOTE: Students work directly in the LIG tube, do not aliquot any extra.

Amgen Biotech Experience Aliquoting Guide

Label tube	Contents of tube	Aliquot	Actually used
М	1 kb ladder	10µL	10µL
LD	Loading dye	12µL	10µL
*dH ₂ O	Distilled water	1000µL	19µL

Laboratory 4. Confirmation of Restriction and Ligation

Reminder: The ladder already contains loading dye. Also, Solution 2 (Lab 1) is the same as loading dye.

Laboratory 4a. Confirmation of pARA-R Restriction Digest

Label tube	Contents of tube	Aliquot	Actually used
М	1 kb ladder	10µL	10µL
LD	Loading dye	6µL	4µL

Reminder: The ladder already contains loading dye. Also, Solution 2 (Lab 1) is the same as loading dye.

Laboratory 5. Transformation of E. coli with Recombinant Plasmid

Label tube	Contents of tube	Aliquot	Actually used
LB	Luria Broth	325µL	300µL
CC***	Competent Cells	100µL	100µL

Students will use the "Ligase" tube that was prepared in Lab 3; it contains 10 μ L of their recombinant plasmid and you will *not* have to label or aliquot these.

***We recommend having students bring their empty tubes on ice to you to receive the competent cells directly into their working tubes (50μ L each to P- and P+) instead of aliquoting them before class. The cells perform best if they are used immediately after they are thawed.

Laboratory 5a. Transformation of *E. coli* with pARA-R

Label tube	Contents of tube	Aliquot	Actually used
RP-5a	pARA-R (10ng/µL)	12µL	10µL
LB	Luria Broth	325µL	300µL
CC***	Competent Cells	100µL	100µL

***We recommend having students bring their empty tubes on ice to you to receive the competent cells directly into their working tubes (50μ L each to P- and P+) instead of aliquoting them before class. The cells perform best if they are used immediately after they are thawed.

Amgen Biotech Experience Aliquoting Guide

PCR Laboratory

NOTE: You must mix the primers with the MasterMix *no more than three weeks before* the PCR laboratory is going to be performed. Thaw the MasterMix and primers, and use as soon as they have thawed. Briefly vortex and flash spin both tubes before mixing. Once MasterMix and primers have been combined, vortex and flash spin before aliquoting. Aliquot on wet ice and immediately refreeze.

You will mix a ratio of 10μ L of primers to 12.5uL of MasterMix. You will need to calculate how much to mix using the following formulae:

1. Total Quantity Needed = $120\mu L \times \#$ lab groups

2. Primer Needed = [Total Quantity Needed/22.5 μ L] x 10 μ L

3. MasterMix Needed = [Total Quantity Needed/22.5 μ L] x 12.5 μ L

For example, if I have 40 lab groups I would do the following:

1. Total Quantity Needed = $120\mu L \times 40 = 4800\mu L$

2. Primer Needed = $[4800\mu L/22.5\mu L] \times 10\mu L = 213.33 \times 10\mu L = 2,133.3\mu L$ primer 3. MasterMix Needed = $[4800\mu L/22.5\mu L] \times 12.5\mu L = 213.33 \times 12.5\mu L = 2,666.67\mu L$

MasterMix

We provide enough extra primer and MasterMix for you to aliquot the amounts shown below.

Label tube	Contents of tube Aliquot		Actually used
PCR	MasterMix with 120µL		92µL
	Primers (see note		
	above)		
+	pARA-R plasmid	3μL	2μL
-	pARA plasmid	3μL	2μL

Part A: Performing PCR

NOTE: The DNA Ladder used here is 100bp DNA Ladder. This is NOT the same DNA Ladder used in Laboratory 4/4a.

Part B: Separate the PCR Products Using Gel Electrophoresis

Label tube	Contents of tube	Aliquot	Actually used
М	DNA ladder (100bp)	12µL	10µL

Laboratory 6. Purifying the Fluorescent Protein

See teacher instructions for Lab 6 on methods for growing the culture of transformed cells. We recommend doing this step with the commercially ligated/purified plasmid used in the short series (pARA-R). The sterile broth provided has been pre-calculated so there is enough for each group to get the 2mL required.

NOTE: You must grow the culture at least 24 hours to get good expression of the rfp before you can begin Lab 6.

Label tube	Contents of tube	Aliquot	Actually used
EC	overnight E. coli	1mL****	2mL
	culture		
LyB	Lysis buffer	160µL	150µL
EB	Elution buffer	160µL	150µL

Day 1. Lysing of cells from the overnight mFP expression.

****You will need to do this twice into the same tube, once before and once following centrifugation after the supernatant has been discarded.

Size of tube	Label tube	Contents of tube	Aliquot	Actually used
15 mL	BB	Binding buffer	250µL	200µL
		$(4M (NH_4)_2 SO_4)$		
15 mL	CEB	Column	3.5mL	3mL
		equilibration buffer		
		$(2M (NH_4)_2 SO_4)$		
15 mL	WB	Wash buffer	1.5mL	1mL
		(1.3M (NH ₄) ₂ SO ₄)		
15 mL	EB	Elution buffer	2.5mL	2mL
		(10mM TE)		

Day 2. Purification of RFP using column chromatography

Be certain that the last group of students flush the columns with 2 mL of equilibration buffer. Allow the equilibration buffer to drain but leave about 0.5cm of it above the resin bed. Be certain that all tubes are capped, that the extensions have been removed and small yellow caps replaced, and check to see that the stop cocks are in the off position before storing for the next school or class. Always store the columns UPRIGHT. Return the columns to the plastic, lidded box.